1,428 research outputs found

    Transformation of in-plane ρ(T)\rho (T) in YBa2Cu3O7δYBa_{2}Cu_{3}O_{7-\delta} at fixed oxygen content

    Full text link
    This paper reveals the origin of variation in the magnitude and temperature dependence of the normal state resistivity frequently observed in different YBCO single crystal or thin film samples with the same TcT_{c}. We investigated temperature dependence of resistivity in YBa2Cu3O7δYBa_{2}Cu_{3}O_{7-\delta} thin films with 7- δ=6.95\delta = 6.95 and 6.90, which were subjected to annealing in argon at 400-420 K (120140oC120-140^{o}C). Before annealing these films exhibited a non-linear ρab(T)\rho_{ab}(T), with a flattening below 230 K, similar to ρb(T)\rho_{b}(T) and ρab(T)\rho_{ab}(T) observed in untwinned and twinned YBCO crystals, respectively. For all films the annealing causes an increase of resistivity and a transformation of ρab(T)\rho_{ab}(T) from a non-linear dependence towards a more linear one (less flattening). In films with 7- δ=6.90\delta = 6.90 the increase of resistivity is also associated with an increase in TcT_{c}. We proposed the model that provides an explanation of these phenomena in terms of thermally activated redistribution of residual O(5) oxygens in the chain-layer of YBCO. Good agreement between the experimental data for ρab(t,T)\rho_{ab}(t,T), where t is the annealing time, and numerical calculations was obtained.Comment: 8 pages, 9 figures, submitted to PR

    Microbiome and resistome profiles along a sewage-effluent-reservoir trajectory underline the role of natural attenuation in wastewater stabilization reservoirs

    Get PDF
    Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL(-1), respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs.IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater. Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs.info:eu-repo/semantics/acceptedVersio

    Functional modelling of complex multi‑disciplinary systems using the enhanced sequence diagram

    Get PDF
    YesThis paper introduces an Enhanced Sequence Diagram (ESD) as the basis for a structured framework for the functional analysis of complex multidisciplinary systems. The ESD extends the conventional sequence diagrams (SD) by introducing a rigorous functional flow-based modelling schemata to provide an enhanced basis for model-based functional requirements and architecture analysis in the early systems design stages. The proposed ESD heuristics include the representation of transactional and transformative functions required to deliver the use case sequence, and fork and join nodes to facilitate analysis of combining and bifurcating operations on flows. A case study of a personal mobility device is used to illustrate the deployment of the ESD methodology in relation to three common product development scenarios: (i) reverse engineering, (ii) the introduction of a specific technology to an existent system; and (iii) the introduction of a new feature as user-centric innovation for an existing system, at a logical design level, without reference to any solution. The case study analysis provides further insights into the effectiveness of the ESD to support function modelling and functional requirements capture, and architecture development. The significance of this paper is that it establishes a rigorous ESD-based functional analysis methodology to guide the practitioner with its deployment, facilitating its impact to both the engineering design and systems engineering communities, as well as the design practice in the industry

    Functional modelling of complex multi‑disciplinary systems using the enhanced sequence diagram

    Get PDF
    YesThis paper introduces an Enhanced Sequence Diagram (ESD) as the basis for a structured framework for the functional analysis of complex multidisciplinary systems. The ESD extends the conventional sequence diagrams (SD) by introducing a rigorous functional flow-based modelling schemata to provide an enhanced basis for model-based functional requirements and architecture analysis in the early systems design stages. The proposed ESD heuristics include the representation of transactional and transformative functions required to deliver the use case sequence, and fork and join nodes to facilitate analysis of combining and bifurcating operations on flows. A case study of a personal mobility device is used to illustrate the deployment of the ESD methodology in relation to three common product development scenarios: (i) reverse engineering, (ii) the introduction of a specific technology to an existent system; and (iii) the introduction of a new feature as user-centric innovation for an existing system, at a logical design level, without reference to any solution. The case study analysis provides further insights into the effectiveness of the ESD to support function modelling and functional requirements capture, and architecture development. The significance of this paper is that it establishes a rigorous ESD-based functional analysis methodology to guide the practitioner with its deployment, facilitating its impact to both the engineering design and systems engineering communities, as well as the design practice in the industry

    On conditional skewness with applications to environmental data

    Get PDF
    The statistical literature contains many univariate and multivariate skewness measures that allow two datasets to be compared, some of which are defined in terms of quantile values. In most situations, the comparison between two random vectors focuses on univariate comparisons of conditional random variables truncated in quantiles; this kind of comparison is of particular interest in the environmental sciences. In this work, we describe a new approach to comparing skewness in terms of the univariate convex transform ordering proposed by van Zwet (Convex transformations of random variables. Mathematical Centre Tracts, Amsterdam, 1964), associated with skewness as well as concentration. The key to these comparisons is the underlying dependence structure of the random vectors. Below we describe graphical tools and use several examples to illustrate these comparisons.The research of Félix Belzunce, Julio Mulero and José María Ruíz is partially funded by the Ministerio de Economía y Competitividad (Spain) under Grant MTM2012-34023-FEDER. Alfonso Suárez-Llorens acknowledges support received from the Ministerio de Economía y Competitividad (Spain) under Grant MTM2014-57559-P

    Role of Sox-9, ER81 and VE-Cadherin in Retinoic Acid-Mediated Trans-Differentiation of Breast Cancer Cells

    Get PDF
    Many aspects of development, tumor growth and metastasis depend upon the provision of an adequate vasculature. This can be a result of regulated angiogenesis, recruitment of circulating endothelial progenitors and/or vascular trans-differentiation. The present study demonstrates that treatment of SKBR-3 breast cancer cells with retinoic acid (RA), an important regulator of embryogenesis, cancer and other diseases, stimulates the formation of networks in Matrigel. RA-treatment of SKBR-3 cells co-cultured with human umbilical vein endothelial cells resulted in the formation of mixed structures. RA induces expression of many endothelial genes including vascular endothelial (VE) cadherin. VE-cadherin was also induced by RA in a number of other breast cancer cells. We show that RA-induced VE-cadherin is responsible for the RA-induced morphological changes. RA rapidly induced the expression of Sox-9 and ER81, which in turn form a complex on the VE-cadherin promoter and are required to mediate the transcriptional regulation of VE-cadherin by RA. These data indicate that RA may promote the expression of endothelial genes resulting in endothelial-like differentiation, or provide a mechanism whereby circulating endothelial progenitor cells could be incorporated into a growing organ or tumor
    corecore